2025-04-02 09:01:55 +02:00

55 lines
2.0 KiB
Python

"""Code generated by Speakeasy (https://speakeasy.com). DO NOT EDIT."""
from __future__ import annotations
from mistralai.types import BaseModel, Nullable, OptionalNullable, UNSET, UNSET_SENTINEL
from pydantic import model_serializer
from typing_extensions import NotRequired, TypedDict
class MetricOutTypedDict(TypedDict):
r"""Metrics at the step number during the fine-tuning job. Use these metrics to assess if the training is going smoothly (loss should decrease, token accuracy should increase)."""
train_loss: NotRequired[Nullable[float]]
valid_loss: NotRequired[Nullable[float]]
valid_mean_token_accuracy: NotRequired[Nullable[float]]
class MetricOut(BaseModel):
r"""Metrics at the step number during the fine-tuning job. Use these metrics to assess if the training is going smoothly (loss should decrease, token accuracy should increase)."""
train_loss: OptionalNullable[float] = UNSET
valid_loss: OptionalNullable[float] = UNSET
valid_mean_token_accuracy: OptionalNullable[float] = UNSET
@model_serializer(mode="wrap")
def serialize_model(self, handler):
optional_fields = ["train_loss", "valid_loss", "valid_mean_token_accuracy"]
nullable_fields = ["train_loss", "valid_loss", "valid_mean_token_accuracy"]
null_default_fields = []
serialized = handler(self)
m = {}
for n, f in self.model_fields.items():
k = f.alias or n
val = serialized.get(k)
serialized.pop(k, None)
optional_nullable = k in optional_fields and k in nullable_fields
is_set = (
self.__pydantic_fields_set__.intersection({n})
or k in null_default_fields
) # pylint: disable=no-member
if val is not None and val != UNSET_SENTINEL:
m[k] = val
elif val != UNSET_SENTINEL and (
not k in optional_fields or (optional_nullable and is_set)
):
m[k] = val
return m