mirror of
https://github.com/Ladebeze66/llm_ticket3.git
synced 2026-02-04 13:50:21 +01:00
55 lines
2.0 KiB
Python
55 lines
2.0 KiB
Python
"""Code generated by Speakeasy (https://speakeasy.com). DO NOT EDIT."""
|
|
|
|
from __future__ import annotations
|
|
from mistralai.types import BaseModel, Nullable, OptionalNullable, UNSET, UNSET_SENTINEL
|
|
from pydantic import model_serializer
|
|
from typing_extensions import NotRequired, TypedDict
|
|
|
|
|
|
class MetricOutTypedDict(TypedDict):
|
|
r"""Metrics at the step number during the fine-tuning job. Use these metrics to assess if the training is going smoothly (loss should decrease, token accuracy should increase)."""
|
|
|
|
train_loss: NotRequired[Nullable[float]]
|
|
valid_loss: NotRequired[Nullable[float]]
|
|
valid_mean_token_accuracy: NotRequired[Nullable[float]]
|
|
|
|
|
|
class MetricOut(BaseModel):
|
|
r"""Metrics at the step number during the fine-tuning job. Use these metrics to assess if the training is going smoothly (loss should decrease, token accuracy should increase)."""
|
|
|
|
train_loss: OptionalNullable[float] = UNSET
|
|
|
|
valid_loss: OptionalNullable[float] = UNSET
|
|
|
|
valid_mean_token_accuracy: OptionalNullable[float] = UNSET
|
|
|
|
@model_serializer(mode="wrap")
|
|
def serialize_model(self, handler):
|
|
optional_fields = ["train_loss", "valid_loss", "valid_mean_token_accuracy"]
|
|
nullable_fields = ["train_loss", "valid_loss", "valid_mean_token_accuracy"]
|
|
null_default_fields = []
|
|
|
|
serialized = handler(self)
|
|
|
|
m = {}
|
|
|
|
for n, f in self.model_fields.items():
|
|
k = f.alias or n
|
|
val = serialized.get(k)
|
|
serialized.pop(k, None)
|
|
|
|
optional_nullable = k in optional_fields and k in nullable_fields
|
|
is_set = (
|
|
self.__pydantic_fields_set__.intersection({n})
|
|
or k in null_default_fields
|
|
) # pylint: disable=no-member
|
|
|
|
if val is not None and val != UNSET_SENTINEL:
|
|
m[k] = val
|
|
elif val != UNSET_SENTINEL and (
|
|
not k in optional_fields or (optional_nullable and is_set)
|
|
):
|
|
m[k] = val
|
|
|
|
return m
|