"""Code generated by Speakeasy (https://speakeasy.com). DO NOT EDIT.""" from __future__ import annotations from mistralai.types import BaseModel, Nullable, OptionalNullable, UNSET, UNSET_SENTINEL from pydantic import model_serializer from typing_extensions import NotRequired, TypedDict class MetricOutTypedDict(TypedDict): r"""Metrics at the step number during the fine-tuning job. Use these metrics to assess if the training is going smoothly (loss should decrease, token accuracy should increase).""" train_loss: NotRequired[Nullable[float]] valid_loss: NotRequired[Nullable[float]] valid_mean_token_accuracy: NotRequired[Nullable[float]] class MetricOut(BaseModel): r"""Metrics at the step number during the fine-tuning job. Use these metrics to assess if the training is going smoothly (loss should decrease, token accuracy should increase).""" train_loss: OptionalNullable[float] = UNSET valid_loss: OptionalNullable[float] = UNSET valid_mean_token_accuracy: OptionalNullable[float] = UNSET @model_serializer(mode="wrap") def serialize_model(self, handler): optional_fields = ["train_loss", "valid_loss", "valid_mean_token_accuracy"] nullable_fields = ["train_loss", "valid_loss", "valid_mean_token_accuracy"] null_default_fields = [] serialized = handler(self) m = {} for n, f in self.model_fields.items(): k = f.alias or n val = serialized.get(k) serialized.pop(k, None) optional_nullable = k in optional_fields and k in nullable_fields is_set = ( self.__pydantic_fields_set__.intersection({n}) or k in null_default_fields ) # pylint: disable=no-member if val is not None and val != UNSET_SENTINEL: m[k] = val elif val != UNSET_SENTINEL and ( not k in optional_fields or (optional_nullable and is_set) ): m[k] = val return m