mirror of
https://github.com/Ladebeze66/llm_ticket3.git
synced 2026-02-04 15:20:22 +01:00
98 lines
3.0 KiB
Python
98 lines
3.0 KiB
Python
"""Code generated by Speakeasy (https://speakeasy.com). DO NOT EDIT."""
|
|
|
|
from __future__ import annotations
|
|
from .documenturlchunk import DocumentURLChunk, DocumentURLChunkTypedDict
|
|
from .imageurlchunk import ImageURLChunk, ImageURLChunkTypedDict
|
|
from mistralai.types import BaseModel, Nullable, OptionalNullable, UNSET, UNSET_SENTINEL
|
|
from pydantic import model_serializer
|
|
from typing import List, Optional, Union
|
|
from typing_extensions import NotRequired, TypeAliasType, TypedDict
|
|
|
|
|
|
DocumentTypedDict = TypeAliasType(
|
|
"DocumentTypedDict", Union[ImageURLChunkTypedDict, DocumentURLChunkTypedDict]
|
|
)
|
|
r"""Document to run OCR on"""
|
|
|
|
|
|
Document = TypeAliasType("Document", Union[ImageURLChunk, DocumentURLChunk])
|
|
r"""Document to run OCR on"""
|
|
|
|
|
|
class OCRRequestTypedDict(TypedDict):
|
|
model: Nullable[str]
|
|
document: DocumentTypedDict
|
|
r"""Document to run OCR on"""
|
|
id: NotRequired[str]
|
|
pages: NotRequired[Nullable[List[int]]]
|
|
r"""Specific pages user wants to process in various formats: single number, range, or list of both. Starts from 0"""
|
|
include_image_base64: NotRequired[Nullable[bool]]
|
|
r"""Include image URLs in response"""
|
|
image_limit: NotRequired[Nullable[int]]
|
|
r"""Max images to extract"""
|
|
image_min_size: NotRequired[Nullable[int]]
|
|
r"""Minimum height and width of image to extract"""
|
|
|
|
|
|
class OCRRequest(BaseModel):
|
|
model: Nullable[str]
|
|
|
|
document: Document
|
|
r"""Document to run OCR on"""
|
|
|
|
id: Optional[str] = None
|
|
|
|
pages: OptionalNullable[List[int]] = UNSET
|
|
r"""Specific pages user wants to process in various formats: single number, range, or list of both. Starts from 0"""
|
|
|
|
include_image_base64: OptionalNullable[bool] = UNSET
|
|
r"""Include image URLs in response"""
|
|
|
|
image_limit: OptionalNullable[int] = UNSET
|
|
r"""Max images to extract"""
|
|
|
|
image_min_size: OptionalNullable[int] = UNSET
|
|
r"""Minimum height and width of image to extract"""
|
|
|
|
@model_serializer(mode="wrap")
|
|
def serialize_model(self, handler):
|
|
optional_fields = [
|
|
"id",
|
|
"pages",
|
|
"include_image_base64",
|
|
"image_limit",
|
|
"image_min_size",
|
|
]
|
|
nullable_fields = [
|
|
"model",
|
|
"pages",
|
|
"include_image_base64",
|
|
"image_limit",
|
|
"image_min_size",
|
|
]
|
|
null_default_fields = []
|
|
|
|
serialized = handler(self)
|
|
|
|
m = {}
|
|
|
|
for n, f in self.model_fields.items():
|
|
k = f.alias or n
|
|
val = serialized.get(k)
|
|
serialized.pop(k, None)
|
|
|
|
optional_nullable = k in optional_fields and k in nullable_fields
|
|
is_set = (
|
|
self.__pydantic_fields_set__.intersection({n})
|
|
or k in null_default_fields
|
|
) # pylint: disable=no-member
|
|
|
|
if val is not None and val != UNSET_SENTINEL:
|
|
m[k] = val
|
|
elif val != UNSET_SENTINEL and (
|
|
not k in optional_fields or (optional_nullable and is_set)
|
|
):
|
|
m[k] = val
|
|
|
|
return m
|