mirror of
https://github.com/Ladebeze66/llm_ticket3.git
synced 2025-12-15 21:26:50 +01:00
144 lines
4.9 KiB
Python
144 lines
4.9 KiB
Python
from .base_llm import BaseLLM
|
|
import requests
|
|
import base64
|
|
import os
|
|
from PIL import Image
|
|
import io
|
|
from datetime import datetime, timedelta
|
|
from typing import Dict, Any
|
|
|
|
class LlamaVision(BaseLLM):
|
|
"""
|
|
Classe optimisée pour interagir avec l'API Llama Vision.
|
|
"""
|
|
|
|
def __init__(self, modele: str = "llama3.2-vision:90b-instruct-q8_0"):
|
|
super().__init__(modele)
|
|
|
|
self.params: Dict[str, Any] = {
|
|
"temperature": 0.2,
|
|
"top_p": 1,
|
|
"max_tokens": 4000,
|
|
"presence_penalty": 0,
|
|
"frequency_penalty": 0,
|
|
"stop": []
|
|
}
|
|
|
|
def urlBase(self) -> str:
|
|
"""
|
|
Retourne l'URL de base de l'API Llama.
|
|
"""
|
|
return "https://api.llama3.ai/v1/"
|
|
|
|
def cleAPI(self) -> str:
|
|
"""
|
|
Retourne la clé API pour Llama.
|
|
"""
|
|
return os.getenv("LLAMA_API_KEY", "")
|
|
|
|
def urlFonction(self) -> str:
|
|
"""
|
|
Retourne l'URL spécifique pour Llama.
|
|
"""
|
|
return "chat/completions"
|
|
|
|
def _preparer_contenu(self, question: str) -> Dict[str, Any]:
|
|
"""
|
|
Prépare le contenu de la requête spécifique pour Llama.
|
|
"""
|
|
contenu = {
|
|
"model": self.modele,
|
|
"messages": [
|
|
{"role": "system", "content": self.prompt_system},
|
|
{"role": "user", "content": question}
|
|
],
|
|
"temperature": self.params["temperature"],
|
|
"top_p": self.params["top_p"],
|
|
"max_tokens": self.params["max_tokens"],
|
|
"presence_penalty": self.params["presence_penalty"],
|
|
"frequency_penalty": self.params["frequency_penalty"],
|
|
"stop": self.params["stop"]
|
|
}
|
|
return contenu
|
|
|
|
def _traiter_reponse(self, reponse: requests.Response) -> str:
|
|
"""
|
|
Traite et retourne la réponse fournie par Llama.
|
|
"""
|
|
data = reponse.json()
|
|
return data["choices"][0]["message"]["content"]
|
|
|
|
def _encoder_image_base64(self, image_path: str) -> str:
|
|
"""
|
|
Encode une image en base64 pour l'API Llama Vision.
|
|
"""
|
|
with open(image_path, "rb") as image_file:
|
|
encoded = base64.b64encode(image_file.read()).decode("utf-8")
|
|
ext = os.path.splitext(image_path)[1].lower().replace(".", "")
|
|
mime = f"image/{ext}" if ext in ["png", "jpeg", "jpg", "webp"] else "image/jpeg"
|
|
return f"data:{mime};base64,{encoded}"
|
|
|
|
def interroger_avec_image(self, image_path: str, question: str) -> str:
|
|
"""
|
|
Interroge le modèle Llama Vision avec une image et une question.
|
|
|
|
Args:
|
|
image_path: Chemin vers l'image à analyser
|
|
question: Question ou instructions pour l'analyse
|
|
|
|
Returns:
|
|
Réponse du modèle à la question
|
|
"""
|
|
url = self.urlBase() + self.urlFonction()
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.cleAPI()}"
|
|
}
|
|
|
|
try:
|
|
encoded_image = self._encoder_image_base64(image_path)
|
|
|
|
contenu = {
|
|
"model": self.modele,
|
|
"messages": [
|
|
{"role": "system", "content": self.prompt_system},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": question},
|
|
{"type": "image_url", "image_url": {"url": encoded_image}}
|
|
]
|
|
}
|
|
],
|
|
"temperature": self.params["temperature"],
|
|
"top_p": self.params["top_p"],
|
|
"max_tokens": self.params["max_tokens"],
|
|
"presence_penalty": self.params["presence_penalty"],
|
|
"frequency_penalty": self.params["frequency_penalty"],
|
|
"stop": self.params["stop"]
|
|
}
|
|
|
|
self.heureDepart = datetime.now()
|
|
response = requests.post(url=url, headers=headers, json=contenu, timeout=180)
|
|
self.heureFin = datetime.now()
|
|
|
|
if self.heureDepart is not None:
|
|
self.dureeTraitement = self.heureFin - self.heureDepart
|
|
else:
|
|
self.dureeTraitement = timedelta(0)
|
|
|
|
if response.status_code in [200, 201]:
|
|
self.reponseErreur = False
|
|
return self._traiter_reponse(response)
|
|
else:
|
|
self.reponseErreur = True
|
|
return f"Erreur API ({response.status_code}): {response.text}"
|
|
|
|
except Exception as e:
|
|
self.heureFin = datetime.now()
|
|
if self.heureDepart is not None:
|
|
self.dureeTraitement = self.heureFin - self.heureDepart
|
|
else:
|
|
self.dureeTraitement = timedelta(0)
|
|
self.reponseErreur = True
|
|
return f"Erreur lors de l'analyse de l'image: {str(e)}" |