mirror of
https://github.com/Ladebeze66/llm_ticket3.git
synced 2026-02-04 13:50:21 +01:00
175 lines
6.0 KiB
Python
175 lines
6.0 KiB
Python
"""Code generated by Speakeasy (https://speakeasy.com). DO NOT EDIT."""
|
|
|
|
from __future__ import annotations
|
|
from .githubrepositoryout import GithubRepositoryOut, GithubRepositoryOutTypedDict
|
|
from .jobmetadataout import JobMetadataOut, JobMetadataOutTypedDict
|
|
from .trainingparameters import TrainingParameters, TrainingParametersTypedDict
|
|
from .wandbintegrationout import WandbIntegrationOut, WandbIntegrationOutTypedDict
|
|
from mistralai.types import BaseModel, Nullable, OptionalNullable, UNSET, UNSET_SENTINEL
|
|
from mistralai.utils import validate_const
|
|
import pydantic
|
|
from pydantic import model_serializer
|
|
from pydantic.functional_validators import AfterValidator
|
|
from typing import List, Literal, Optional
|
|
from typing_extensions import Annotated, NotRequired, TypedDict
|
|
|
|
|
|
Status = Literal[
|
|
"QUEUED",
|
|
"STARTED",
|
|
"VALIDATING",
|
|
"VALIDATED",
|
|
"RUNNING",
|
|
"FAILED_VALIDATION",
|
|
"FAILED",
|
|
"SUCCESS",
|
|
"CANCELLED",
|
|
"CANCELLATION_REQUESTED",
|
|
]
|
|
r"""The current status of the fine-tuning job."""
|
|
|
|
Object = Literal["job"]
|
|
r"""The object type of the fine-tuning job."""
|
|
|
|
IntegrationsTypedDict = WandbIntegrationOutTypedDict
|
|
|
|
|
|
Integrations = WandbIntegrationOut
|
|
|
|
|
|
RepositoriesTypedDict = GithubRepositoryOutTypedDict
|
|
|
|
|
|
Repositories = GithubRepositoryOut
|
|
|
|
|
|
class JobOutTypedDict(TypedDict):
|
|
id: str
|
|
r"""The ID of the job."""
|
|
auto_start: bool
|
|
hyperparameters: TrainingParametersTypedDict
|
|
model: str
|
|
r"""The name of the model to fine-tune."""
|
|
status: Status
|
|
r"""The current status of the fine-tuning job."""
|
|
job_type: str
|
|
r"""The type of job (`FT` for fine-tuning)."""
|
|
created_at: int
|
|
r"""The UNIX timestamp (in seconds) for when the fine-tuning job was created."""
|
|
modified_at: int
|
|
r"""The UNIX timestamp (in seconds) for when the fine-tuning job was last modified."""
|
|
training_files: List[str]
|
|
r"""A list containing the IDs of uploaded files that contain training data."""
|
|
validation_files: NotRequired[Nullable[List[str]]]
|
|
r"""A list containing the IDs of uploaded files that contain validation data."""
|
|
object: Object
|
|
r"""The object type of the fine-tuning job."""
|
|
fine_tuned_model: NotRequired[Nullable[str]]
|
|
r"""The name of the fine-tuned model that is being created. The value will be `null` if the fine-tuning job is still running."""
|
|
suffix: NotRequired[Nullable[str]]
|
|
r"""Optional text/code that adds more context for the model. When given a `prompt` and a `suffix` the model will fill what is between them. When `suffix` is not provided, the model will simply execute completion starting with `prompt`."""
|
|
integrations: NotRequired[Nullable[List[IntegrationsTypedDict]]]
|
|
r"""A list of integrations enabled for your fine-tuning job."""
|
|
trained_tokens: NotRequired[Nullable[int]]
|
|
r"""Total number of tokens trained."""
|
|
repositories: NotRequired[List[RepositoriesTypedDict]]
|
|
metadata: NotRequired[Nullable[JobMetadataOutTypedDict]]
|
|
|
|
|
|
class JobOut(BaseModel):
|
|
id: str
|
|
r"""The ID of the job."""
|
|
|
|
auto_start: bool
|
|
|
|
hyperparameters: TrainingParameters
|
|
|
|
model: str
|
|
r"""The name of the model to fine-tune."""
|
|
|
|
status: Status
|
|
r"""The current status of the fine-tuning job."""
|
|
|
|
job_type: str
|
|
r"""The type of job (`FT` for fine-tuning)."""
|
|
|
|
created_at: int
|
|
r"""The UNIX timestamp (in seconds) for when the fine-tuning job was created."""
|
|
|
|
modified_at: int
|
|
r"""The UNIX timestamp (in seconds) for when the fine-tuning job was last modified."""
|
|
|
|
training_files: List[str]
|
|
r"""A list containing the IDs of uploaded files that contain training data."""
|
|
|
|
validation_files: OptionalNullable[List[str]] = UNSET
|
|
r"""A list containing the IDs of uploaded files that contain validation data."""
|
|
|
|
OBJECT: Annotated[
|
|
Annotated[Optional[Object], AfterValidator(validate_const("job"))],
|
|
pydantic.Field(alias="object"),
|
|
] = "job"
|
|
r"""The object type of the fine-tuning job."""
|
|
|
|
fine_tuned_model: OptionalNullable[str] = UNSET
|
|
r"""The name of the fine-tuned model that is being created. The value will be `null` if the fine-tuning job is still running."""
|
|
|
|
suffix: OptionalNullable[str] = UNSET
|
|
r"""Optional text/code that adds more context for the model. When given a `prompt` and a `suffix` the model will fill what is between them. When `suffix` is not provided, the model will simply execute completion starting with `prompt`."""
|
|
|
|
integrations: OptionalNullable[List[Integrations]] = UNSET
|
|
r"""A list of integrations enabled for your fine-tuning job."""
|
|
|
|
trained_tokens: OptionalNullable[int] = UNSET
|
|
r"""Total number of tokens trained."""
|
|
|
|
repositories: Optional[List[Repositories]] = None
|
|
|
|
metadata: OptionalNullable[JobMetadataOut] = UNSET
|
|
|
|
@model_serializer(mode="wrap")
|
|
def serialize_model(self, handler):
|
|
optional_fields = [
|
|
"validation_files",
|
|
"object",
|
|
"fine_tuned_model",
|
|
"suffix",
|
|
"integrations",
|
|
"trained_tokens",
|
|
"repositories",
|
|
"metadata",
|
|
]
|
|
nullable_fields = [
|
|
"validation_files",
|
|
"fine_tuned_model",
|
|
"suffix",
|
|
"integrations",
|
|
"trained_tokens",
|
|
"metadata",
|
|
]
|
|
null_default_fields = []
|
|
|
|
serialized = handler(self)
|
|
|
|
m = {}
|
|
|
|
for n, f in self.model_fields.items():
|
|
k = f.alias or n
|
|
val = serialized.get(k)
|
|
serialized.pop(k, None)
|
|
|
|
optional_nullable = k in optional_fields and k in nullable_fields
|
|
is_set = (
|
|
self.__pydantic_fields_set__.intersection({n})
|
|
or k in null_default_fields
|
|
) # pylint: disable=no-member
|
|
|
|
if val is not None and val != UNSET_SENTINEL:
|
|
m[k] = val
|
|
elif val != UNSET_SENTINEL and (
|
|
not k in optional_fields or (optional_nullable and is_set)
|
|
):
|
|
m[k] = val
|
|
|
|
return m
|