from core.factory import LLMFactory from agents.roles import AGENTS import sys import os sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) # Cas d'utilisation : analyse uniquement visuelle role = "diagnostic_assistant" prompt = "What do you see in the attached screenshot? Describe the main elements." image_path = ["images/error_screenshot.png"] custom_params = { "temperature": 0.3, "top_p": 1.0, "format": "json" } model = LLMFactory.create("llama3.2-vision:90b") model.set_role(role, AGENTS[role]) model.params.update(custom_params) response_en, response_fr = model.generate( user_prompt=prompt, images=image_path, translate=True ) print("[EN]", response_en) print("[FR]", response_fr)